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Abstract

We propose a novel combinatorial algorithm for efficient generation of Hamiltonian walks and cycles on a cubic lattice, modeling the

conformations of lattice toy proteins. Through extensive tests on small lattices (allowing complete enumeration of Hamiltonian paths), we

establish that the new algorithm, although not perfect, is a significant improvement over the earlier approach by Ramakrishnan et al. [J Chem

Phys 103(17) 7592 (1995)], as it generates the sample of conformations with dramatically reduced statistical bias. Using this method, we

examine the fractal properties of typical compact conformations. In accordance with Flory theorem celebrated in polymer physics, chain

pieces are found to follow Gaussian statistics on the scale smaller than the globule size. Cross-over to this Gaussian regime is found to happen

at the scales which are numerically somewhat larger than previously believed. We further used Alexander and Vassiliev degrees 2 and 3

topological invariants to identify the trivial knots among the Hamiltonian loops. We found that the probability of being knotted increases with

loop length much faster than it was previously thought, and that chain pieces are consistently more compact than Gaussian if the global loop

topology is that of a trivial knot.

q 2003 Published by Elsevier Ltd.
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1. Introduction

The dominant mood among the protein folding experts

these days seems to suggest that we are rapidly approaching

the day when experiments and theory—or, rather, simu-

lations—will be ready for direct quantitative comparison.

New generation experiments, including single molecule

ones [2–4] provide the long awaited insights into the

folding paths. New proteins are discovered or invented

exclusively with the goal to see their folding on the time

scale more accessible to simulations. In the complementary

drive, modern computer simulations [5–7], particularly

those employing so-called distributed computing [8], not

only consider explicitly all atoms (although no explicit

water), but also rapidly improve in terms of the ways to treat

forces involved [9–12]. The impressive episode of a

theoretical prediction [13] verified by the experiment [14]

is celebrated [15] as the sign of approaching new level of

integration between theory and experiments.

In our opinion, all these shining achievements only

highlight once again how badly we need a better insight into

the simple fundamentals of folding. Just as the decoding of

genomes does not cancel, but strengthens the pressing need

of orders of magnitude higher throughput reading systems,

in the same way deeper understanding of the underlying

simple physical principles behind protein folding

remains one of the most needed pieces of the puzzle. With

this point in mind, in this work we try to address deeper the

properties of the simplest caricature proteins, namely,

lattice ones.

Of course, in our work with simple toy models we should

keep an eye on the progress of more elaborate studies. What

do they teach us? In the opinion of the present authors, what

stands out as a common lesson in all computational studies

of protein folding is the central importance of the interplay

between two trivial facts—the first is that proteins are

polymers, and the second is that they are compact (globular)

polymers. Very highly non-trivial geometry comes with
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these facts [16–21]. This opinion was also explicitly

formulated in the recent News and Views [15].

What do we know about compact polymer confor-

mations? Protein data bank contains large and rapidly

growing collection of conformations. Should there be any

general principle behind these conformations? Many

authors are looking for such principles, either biological

(selection-driven), or physical, geometrical, etc. Not even

starting to discuss the existing theories, their advantages and

disadvantages, we would like to point out that such

discussion remains premature as long as properties of

random compact conformations are not understood well.

Indeed, having no insight into the majority of arbitrary

conformations, we cannot judge how non-random are the

conformations in protein data bank. For instance, there are

relatively few knots in native proteins [22–25]; is it because

unknotted conformations are somehow biologically

selected, or are they physically preferable for, e.g.

folding—or alternatively, maybe, what seems to be ‘few’

for us is, in fact, statistically expected number of knots in

compact conformations of the given length? Currently, we

cannot answer this.

The theory of random compact conformations is well

developed on the mean field level (see, e.g., in the book

[26]). This is the theory of homopolymer globules, because

they are entropically dominated by the most typical

conformations. Major conclusion of the mean field theory

is that chain segments inside the globule follow Gaussian

statistics, and do not exhibit any signs of order. This

conclusion is in sharp contradiction with the statements in

the literature [27–29] that compactness of the conformation

may favor elements of secondary structures, such as a-

helices and b-pins.

Computationally, the problem of compact conformations

is closely related to that of Hamiltonian walks on the graphs.

We remind the reader that the concept of a Hamiltonian

walk was introduced by Hamilton in connection with

famous Euler problem of Königsberg bridges: the task was

to find the Sunday promenade passing every one of the

seven bridges, never returning to the already visited place.

In general, Hamiltonian walk on an arbitrary graph can be

defined as a walk that visits every site on the graph once and

only once. If our graph, say, ‘ £ m £ n piece of the cubic

lattice in 3D, then Hamiltonian walk on such graph is the

same as maximally compact conformation of the polymer

filling ‘ £ m £ n domain.

Enumeration of Hamiltonian walks on graphs is well

known problem in combinatorics. Of course, the best

possible statistics is achieved by exhaustive enumeration of

all Hamiltonian walks. This is possible for rather short

polymer chains only: for the chains with 27 monomers

filling 3 £ 3 £ 3 of the cubic lattice [30], and also for 36- and

48-mers, filling 3 £ 3 £ 4 and 3 £ 4 £ 4 segments, respect-

ively [31]. Obviously, these chains are far too short to

address statistics and fractal structure of the typical

conformation.

Short of exhaustive enumeration, other methods to

generate larger compact conformations have been

suggested. The most straightforward Monte Carlo chain

growth methods [32] are totally inefficient for long compact

chains, because of catastrophic explosion of rejected looped

conformations. Transfer matrix approach put forward by

[33–35] is very efficient for the chains filling an elongated

domain ‘ £ m £ n; where one of the dimensions, say n; may

be arbitrarily large. Unfortunately, to remain within

computational tractability, two other dimensions, ‘ and m;

must be small, not greater than 2 or 3. An alternative

approach, suggested in [1], is free of this limitation. It

employs combinatorial techniques of two-matching and

patching of bipartite graphs. Unfortunately, we found that

this method generates conformations in a heavily biased

way.

The objective of our work is three-fold. First, we report

the improvements to the algorithm by Ramakrishnan et al.

[1]. We must mention at once that even the improved

method is not free of biases; however, it is significantly

better in this respect than the original approach [1]. Second,

we investigate the properties of the generated compact

conformations (Hamiltonian walks) and cycles against the

polymer length. The largest walks generated have the size

22 £ 22 £ 22: Third, we examine the topology of maximally

compact closed loops, including the loop length dependence

of the trivial knot probability, as well as the local fractal

structure of the typical conformation for both averaged loop

and the loop which is trivial as a knot.

The article is organized as follows. The proposed new

algorithm is formulated in details in Section 2. The results of

the implementation of this algorithm are presented in

Section 3. The topological properties of the compact knots

are considered in Section 4. At the end, we discuss the

conclusions from our study in Section 5.

2. Methods

2.1. Construction of the lattice graph

We performed our simulations on L £ L £ L cubic

lattices with L ¼ 2; 3;…; 22; but our algorithm applies for

any finite regular bipartite graph. The graph is called

bipartite if two colors suffice to paint it in such a way that

every two neighboring vertexes have different colors. Chess

board is a good example of a bipartite graph; three vertices

connected as a triangle is an example of a graph which is not

bipartite. We call the graph, or lattice, even or odd if the

total number of vertexes, N; and, therefore, the length of

Hamiltonian walk, is even or odd, respectively. Obviously,

L £ L £ L cubic lattice is the bipartite graph, with N ¼ L3; it

is even or odd for even or odd L; respectively.

The following very simple theorem can be established

regarding the Hamiltonian walks on bipartite graphs. If a

bipartite graph is colored, say, using black and white colors,
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then the walks on this graph necessarily step from black to

white or vice versa. Therefore, every Hamiltonian walk on

an even lattice starts and ends on different colors, while on

the odd lattice its ends occupy the vertices of the same color.

Moreover, on the odd lattice one of the colors can be called

major, because there are more sites of one color than the

other (ðN þ 1Þ=2 vs. ðN 2 1Þ=2). We shall call this simple

statement the chess board theorem. One of the conclusions

of the chess board theorem is that the Hamiltonian cycles

are impossible on the odd lattices, because every cycle on

the bipartite graph must contain equal number of sites of

both colors.

From the discussion above, it may seem that generation

of Hamiltonian walks on odd and even lattices, and

generation of Hamiltonian cycles on even lattices, are

three very different problems which should be treated

separately. In fact, they can all be reduced to one another by

the trick proposed in the article [1]. Let us introduce

extended graph by adding some out-of-lattice vertices using

the following rules.

† In case of even lattice, we add two out-of-lattice vertices

of different colors (see Fig. 1a). We connect them to each

other, and each of them—to all the lattice vertices of the

opposite color.

† In case of odd lattice, we add only one out-of-lattice

vertex, which is colored minor color and connected to

all major color ‘real’ vertices (Fig. 1b).

Constructed this way, extended lattices are always even.

Therefore, all we have to do is to generate Hamiltonian

cycles on the even lattices. As soon as that problem is

addressed, we can generate Hamiltonian cycle on the

extended lattice and obtain open Hamiltonian walk by just

removing the out-of-lattice vertices.

2.2. The algorithm

The original combinatorial algorithm by Ramakrishnan

et al. [1] consists of two steps. First, it generates some

configuration of sub-cycles and sub-chains with dead ends

on the lattice by means of two-matching procedure; second,

it transforms these pieces into a single Hamiltonian walk

using another procedure called patching. The main novelty

of our algorithm is that the formation of sub-cycles and sub-

chains is forbidden, and we always generate the single

Hamiltonian cycle on the extended lattice graph. Thus,

patching stage becomes unnecessary. We explain in the

Appendix A, why the formation of small loops and sub-chains

Fig. 1. The construction of the lattice graphs for generation of (a)

Hamiltonian walk on even lattice; (b) on odd lattice; (c) Hamiltonian cycle.

The walks are drawn as continuous lines and the edges of the lattice graphs

as broken lines.

Fig. 2. Schematic representation of the application of the algorithm. For

simplicity, steps of the algorithm are shown in two dimensions. See text for

further explanations.
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in the original method [1] biases sampling of the

Hamiltonian walks.

The algorithm works by placing links on the lattice

graph. At the beginning, the lattice graph contains no links.

Then, algorithm starts placing links randomly, connecting

randomly chosen neighboring vertices (Fig. 2a). Every time

a new link is chosen, we check whether it forms an

unwanted small subcycle or a dead end (Fig. 2b), and the

link is rejected if this happens. (The only little exclusion

from the general rule is required for an even lattice, where

the first link is always drawn between the out-of-lattice

vertices, and this link is never removed on the later steps of

the algorithm.) The algorithm stops when all vertices of the

graph are saturated by two links each, and the links form a

Hamiltonian cycle. The obvious difficulty is that randomly

chosen vertex frequently cannot be linked to its randomly

chosen neighbors, because the latter is already saturated

(Fig. 2c). This is the situation in which two-matching is

applied.

Two-matching starts from picking up a vertex, P; which

is currently either not connected, or has only one incoming

link. Then, its random neighbor Q is chosen as an opposite

end of the new link. If Q belongs to some linear sub-chain,

we pick up randomly one of the links incoming to it and

follow this direction along the sub-chain. When the sub-

chain terminus is found, it is investigated for the possibility

to be connected with one of its neighbors. For each vertex,

all the non-saturated neighbors ending the sub-chain are

placed on the special list. The neighbors are not included in

the list if linking with them leads to the formation of sub-

cycles or dead ends (Fig. 2d). Then, a random vertex from

the list (of course, if the list is not empty) is chosen, and the

new link is drawn (Fig. 2e). The growth of the sub-chain is

followed by the switching of the links incident on Q: The

link such as QS (see Fig. 2f; the link opposite to the one

pointing to the end just elongated) is removed and the new

link PQ is drawn, subject to the following two conditions:

(i) the vertex P is still unsaturated after the elongation of the

sub-chain; (ii) linking the vertices P and Q does not produce

subcycle or dead end. Depending on the success of two

processes contributing to the two-matching, the number of

links on the graph increases by one, remains the same, or

decreases by one. In our simulations, the latter case was rare

and did not slow the process too much.

The new links are placed on the graph until finally a

single cycle passing once and only once through every

vertex of the graph (including the out-of-lattice ones) is

formed.

2.3. Algorithm performance test

We implemented the algorithm described just above to

generate linear polymer chains up to the size 12 £ 12 £ 12

on even lattices, up to 15 £ 15 £ 15 on odd lattices, and the

compact cycles of the sizes up to 22 £ 22 £ 22: On the

lattices larger than mentioned this algorithm becomes

exponentially slow, however, for the investigated lattices,

we found the CPU time necessary to generate one chain

conformation demonstrates power law dependence on the

length of the walk, N: The effectiveness of our algorithm

executed on the Pentium III 1.1 GHz PC is demonstrated in

Fig. 3. The run time scales approximately as N2:1 for both

linear polymers and cycles for the moderate chain lengths.

This is slower than performance reported in [1] for the

original algorithm (, N1:1). This is the price we must pay to

ensure fair sampling. Still, our algorithm allows to generate

compact polymer chains within the length range of several

orders of magnitude.

2.4. Topological aspects

There exists abundant literature on computational studies

of the knot composition of non-compact closed chains,

starting with the pioneering work of Vologodskii et al.

[36–41]. These studies are mostly motivated by the intent to

model closed circular DNA. There are much fewer studies

made with compact chains [42,43], although the question of

knots in proteins is widely considered a puzzle [22–25].

We should particularly emphasize the work by Mansfield

[43], where he addressed knots in Hamiltonian cycles on the

cubic lattice. What we add here to his analysis is we pull it to

significantly longer loops, which turns out to be essential,

and we also study the statistics of the sub-chains in the loop

whose overall global topology is fixed.

As in all previous works, we applied the theory of knot

invariants to determine the knot-type of a given confor-

mation. Knot invariants are mathematical objects that serve

as a ‘signature’ of the knot-type. As a signature, knot

invariants are, unfortunately, not unique to a given knot. The

use of the appropriate types and number of knot invariants

yields only a good likelihood that the knot has been

identified correctly. This likelihood is high, in certain cases

unity, if the number of crossings in the knot projection could

be reduced to a sufficiently small number. The difficulty we

have to face here is that compact conformations have

typically very large numbers of crossings on the projection.

In this work, we calculated for a knot K three

invariants—the Alexander polynomial ðDðtÞKÞ evaluated at

a certain value of t; ðDð21ÞKÞ; the Vassiliev invariant of

degree two ðv2ðKÞÞ; and the Vassiliev invariant of degree

three ðv3ðKÞÞ—as was also done in [41]. A connection is

made between a conformation and its knot-type if the

invariants calculated from the projection of the confor-

mation coincide with the invariants associated with the

knot-type.

In order to illustrate the necessity of topological

invariants in identifying even the simplest knots, including

the trivial knot (which is an unknot) we show Fig. 4. In fact,

the loop shown in this figure is a trefoil knot, but it is

virtually impossible to realize this fact by eye.

Thus, after a compact conformation has been generated,

the procedure for determining its knot-type involves the

R. Lua et al. / Polymer 45 (2004) 717–731720



following steps: (1) Generate plane projection; (2) Prepro-

cess projection; (3) Compute knot invariants from projec-

tion; (4) Match conformation with knot-type using Table 1.

2.4.1. Preprocessing projection

The goal of preprocessing the projection is to simplify

the knot by reducing the number of intersections or

crossings of the projected links. The intuitive local

‘moves’ that can accomplish this simplification are called

Reidemeister moves (see, for instance, [44]). Given the very

complicated nature of typical compact conformations, we

resort to combinations of Reidemeister moves, com-

pounded, or ‘macro’, as discussed in [45].

For large conformations, a further simplification can be

achieved by first ‘inflating’ the conformation before taking

the projection. A less dense conformation leads to a

significant reduction of crossings. In fact, this was done

for 14 £ 14 £ 14 conformations before the Vassiliev invar-

iants were evaluated.

2.4.2. Computing knot invariants

An algorithm for computing the Alexander polynomial

DðtÞK is presented clearly in [36] and will not be discussed

any further here. Suffice it to say that the algorithm requires

the construction of an ‘Alexander’ matrix from the knot

projection, with dimension equal to the number of crossings.

The determinant is subsequently calculated after setting t to

21 to obtain the single number Dð21ÞK :

The geometrical origin of this invariant may be traced to

‘linking’ numbers calculated from a set of closed curves.

Fig. 3. Performance of the algorithm for generation of Hamiltonian walks and cycles on cubic lattices. The results for even walks are shown as triangles, for odd

walks as diamonds, for cycles as squares.

Fig. 4. Projected nodes and links of a 6 £ 6 £ 6 conformation. The knot

formed is a trefoil.

Table 1

Values of knot invariants for a few knots

KNOT Alexander, lDð21ÞK l Vassiliev, v2ðKÞ Vassiliev, lv3ðKÞl CHIRAL?

01 (Trivial) 1 0 0 NO

31 3 1 1 YES

41 5 21 0 NO

51 5 3 5 YES

52 7 2 3 YES
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These closed curves are associated with a ‘Seifert surface’

whose boundary is the knot [44].

The calculations for the Vassiliev invariants (v2ðKÞ;

v3ðKÞ) are presented as diagrammatic formulas in [46].

These formulas operate on a Gauss diagram, or equivalently

on a Gauss code for a knot K: The set of Vassiliev invariants

may be considered as a generalization of the Gauss integral

formula for the linking number.

As mentioned earlier, it is possible for two distinct knots

to have the same set of knot invariants. However, we expect

that the false identification of a knot would be rare. For

instance, the set of three knot invariants for the trivial knot is

distinct from those of (prime) knots with 10 minimum

crossings or fewer (249 knots in all) in their projection.

3. Results: compact chains

3.1. Statistics for the small lattices

As a first test of our algorithm, we compare the statistics

of generated random samples with the results of exhaustive

enumeration for 2 £ 2 £ 2 and 3 £ 3 £ 3 cubic lattices.

For the 2 £ 2 £ 2 lattice the task is easy, because the

complete list consists of only 3 symmetrically unrelated

Hamiltonian walks. These walks are shown in the Fig. 5.

The unbiased algorithm should generate each of these 3

conformations with probabilities 1/3. We generated samples

of 100,000 walks using our algorithm and using the original

algorithm of Ramakrishnan et al. [1]. The average fractions

of different walks in generated samples obtained with both

algorithms are shown in Table 2. Clearly, the algorithm [1]

fails this test; the reasons of its failure are explained in the

Appendix A.

For the 3 £ 3 £ 3 lattice a little more elaborate procedure

is necessary. Suppose, there are some M conformations (for

instance, M ¼ 103346 for 3 £ 3 £ 3 lattice [30]), and

suppose we repeatedly apply one and the same algorithm

to generate a number K of Hamiltonian walks. Apart from

glitches with the random number generators, subsequent

applications of the algorithm are statistically independent.

Therefore, for every conformation i there is the occurrence

probability pi: For the unbiased algorithm, pi ¼ 1=M; in

general, e i ¼ pi 2 1=M measures the bias. To examine this

bias, we compute the distribution mk—for every number of

appearances k; mk is the number of conformations that

appeared k times in K trials. Obviously, mk is normalized

such that
PK

k¼0 mk ¼ M: Since appearances of every

particular conformation are binomially distributed, we have

mk ¼
XM
i¼1

pk
i ð1 2 piÞ

K2k K!

k!ðK 2 kÞ!
ð1Þ

where the summation runs over all conformations. From

here, it is not difficult to find that, first of all, the average

(over all conformations) appearance number is �k ¼ K=M; it

is independent of a bias. The information about the bias is

contained in further moments of the distribution. Specifi-

cally, we consider the further cumulants of the distribution

of e i : variance

ke2lcum ; ke2l ¼
1

K2
ðk 2 �kÞ2 2

K

M

� �
; ð2Þ

skewness

ke3lcum ; ke3l ¼
1

K3
ðk 2 �kÞ3 2 3 ðk 2 �kÞ2 þ 2

K

M

� �
ð3Þ

and kurtosis

ke4lcum ; ke4l2 3ke2l2

¼
1

K4

"
ðk 2 �kÞ4 2 6ðk 2 �kÞ3 þ 11ðk 2 �kÞ2

2 3ðk 2 �kÞ22 2 6
K

M

#
; ð4Þ

where averaged (over all conformations) powers of e are

defined according to

kenl ¼
1

M

XM
i¼1

en
i ð5Þ

We generated two samples of K ¼ 10; 000; 000 Hamil-

tonian walks by means of our algorithm and the one of the

article [1] and compared the appearance of different

Hamiltonian walks in these samples. The obtained distri-

butions mk for both algorithms are shown in Fig. 6. The

distribution (1) for the unbiased e ¼ 0 case (when it is

simply a Gaussian with the mean K=M and variance also

K=M) is also presented in the same figure. The parameters of

the computed distributions are summarized in the Table 3.

As the data indicate, our algorithm produces the

distribution, which is close to the expected unbiased result.

The distribution shape is very closely Gaussian, which
Fig. 5. There are three symmetrically unrelated conformations possible on

2 £ 2 £ 2 cubic lattice.

Table 2

The average fractions of different 2 £ 2 £ 2 conformations in generated

samples obtained with two algorithms

Algorithm Conformation

1 2 3

Ramakrishnan et al. [1] 0.278 0.358 0.364

Present 0.328 0.328 0.344
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means the bias is weak. At the same time, the algorithm of

the article [1] showed poor results and produced the

distribution, which is essentially skewed. This demonstrates

strong biases of that method.

A not so good news about our algorithm is that the width

of the distribution is still larger than expected for unbiased

sampling. Given the width of the distribution we can

estimate the bias from formula (2), e ¼ 1:2 £ 1026: This

signals certain bias, about 10%; in the generation of

Hamiltonian walks. However, the bias is small, and

certainly much smaller than for the previous algorithm. In

what follows, we shall examine the statistics of Hamiltonian

walks generated by our algorithm and neglecting its bias.

3.2. Statistics of segments and loops in generated walks

By the statistics of segments we understand the

following. Imagine a long polymer compressed in a very

compact state, and suppose a part of the chain, some ‘

monomers long, is labeled. For instance, it may be

deuterated. Then, we can study the conformation of the

labeled segment. Is it collapsed, with the overall size scaling

as ‘1=3? Is it extended, with end-to-end distance scaling as

‘1? Does it exhibit any signs of regularity, such as helical

structure of some sort? Or is it purely random, yielding

Gaussian statistics with the size scaling as ‘1=2? This is the

question we want to address here.

To begin with, let us remind the major conclusions of the

mean field theory (see, e.g., review in the book [26]). This

theory suggests that labeled chain segment behaves

similarly to the labeled chain in a macroscopic polymer

melt or concentrated solution of different chains. Therefore,

it obeys Flory theorem [47–49]. To appreciate the highly

non-trivial statement of the Flory theorem, one has to realize

first of all that either labeled chain in the concentrated melt,

or labeled ‘-segment in the globule, is subject to the volume

exclusion constraint: trivially, other monomers cannot

penetrate the volume occupied by any given monomer. As

it is well known in polymer physics, volume exclusion leads

to polymer swelling, with significant correlations between

monomers, and with chain size scaling ‘n; n < 0:588 < 3=5:

It is not difficult to realize that the presence of surrounding

chains in the melt, or surrounding parts of the same chain in

the globule, leads to some effective attraction between

labeled monomers. Flory theorem says that this attraction

exactly compensates the excluded volume effect. In other

words, surrounding polymer medium shields excluded

volume effect, leaving labeled chain with Gaussian statistics

and the size proportional to ‘1=2: This screening is some-

times called Edwards screening, it is similar to Debye

screening in plasma.

Fig. 6. The computed distributions of not symmetrically related conformations on 3 £ 3 £ 3 lattice by the frequency of generation obtained by our method

(columns) and method of article [1] (grey line) compared with the distribution expected for the unbiased algorithm (black line). Here, k is the number of times a

conformation appeared in K ¼ 10; 000; 000 trials, while mk ; for every k; is the number of conformations which appeared k times. The number of different

Hamiltonian walks on 3 £ 3 £ 3 lattice is M ¼ 103346:

Table 3

The parameters of computed distributions of conformations on 3 £ 3 £ 3 lattice obtained with two algorithms

Algorithm ðke2lcumÞ
1=2=ð1=MÞ ðke3lcumÞ

1=3ð1=MÞ ðke4lcumÞ
1=4ð1=MÞ

Ramakrishnan et al. [1] 0.34 0.34 0.35

Present 0.12 0.09 0.21

R. Lua et al. / Polymer 45 (2004) 717–731 723



What is the range of ‘ in which Gaussian scaling ‘1=2 is

expected? Of course, ‘ must be larger than the effective

Kuhn segment—which is equal to unity for the lattice

model. Another restriction, relevant for the globule and not

for the melt, is that labeled segment as a whole should be

away from globule boundaries, or surfaces. Assuming

globule size about N1=3 for the globule of density one and

the chain of N monomers, we arrive at the condition ‘1=2 ,

N1=3; or 1 , ‘ , N2=3:

Although this is not very important for the present study,

we would like to digress to inform the reader that even

within the mean field level, there are delicate corrections to

the simple picture as described above. To understand this,

one should think of an auxiliary problem of a Gaussian

polymer without excluded volume confined in a cavity with

impermeable walls. Under such conditions, chain adopts a

conformation with density peaked at the middle of the

cavity and with density almost vanishing at the cavity walls

[26]. The contrast between this theoretical model and the

real globule with flat distributed internal density suggests

that self-consistent field acting inside the globule not only

compresses the chain, acting like a cavity, but also pulls the

monomers from globule center to the periphery. This pull

slightly perturbs Gaussian statistics of the sub-chains,

particularly those located nearby the globule boundary.

Computationally, we shall not look into this delicate effect

in our present study.

Thus, we compute the mean square end-to-end distances

of the segments of Hamiltonian walks:

kR2ð‘Þl ¼
1

KðN 2 ‘Þ

XK
j

XN2‘

i

~r
ðjÞ
iþ‘ 2 ~r

ðjÞ
i

� �
2 ð6Þ

where ‘ is the contour length of the segment of the walk (in

units of steps), K is the total number of walks in the sample,

N is the length of the walk, ~r
ðjÞ
i is the position vector of the

vertex visited ith in the jth walk.

The results for the samples of Hamiltonian walks of

different lengths are presented in Fig. 7. In good agreement

with mean field theory, on the scales smaller than N2=3 the

walks obey Flory theorem [47] and the average distance

between the segment ends scales such that kR2ð‘Þl , ‘: We

would like to note here that Flory theorem does not tell us

anything about the prefactor of this scaling. Fitting on the

statistics of the lattice polymer cycles of the size 22 £ 22 £

22 suggests the prefactor to be equal < 1:5 . 1: For the

polymer chain without excluded volume it is exactly equal

to 1. Therefore, the excluded volume effectively increases

the Kuhn segment length.

On the scales ‘ , N; the walk starts feeling the

confinement by the lattice borders, and kR2ð‘Þl levels off.

Another measure of the agreement between statistics of

Hamiltonian walks and Flory theorem is the looping

probability. The Fig. 8a shows how often the loops of

different contour lengths appear in the Hamiltonian walks.

Fig. 7. Mean square end-to-end distance of the segments of Hamiltonian

walks vs. the lengths of segments is shown for the lattices of different sizes.

The curves for linear walks and cycles on the lattices 4 £ 4 £ 4; 8 £ 8 £ 8

and 12 £ 12 £ 12 coincide.

Fig. 8. (a) The average number of loops of various contour length in

generated Hamiltonian walks on the lattices of different size. Vertical lines

display the cross-over values of ‘ at which looping probability saturates.

Horizontal dash line corresponds to the predicted saturation level for the

22 £ 22 £ 22 walks. (b) The dependence of the cross-over value of ‘ on the

polymer length.
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Here, we say that the walk makes a loop of the length ‘; if

after visiting site with the coordinates ~ri it visits one of this

site neighbors in exactly ‘ steps. What does the mean field

theory have to say about these loops?

As we saw for the statistics of end-to-end distances, on

the scales ‘ , N2=3; the Hamiltonian walks are Gaussian.

Then, the probability distribution of their end-to-end vectors

must obey Gaussian law , ‘23=2exp 2 R2=‘: For the loop,

R ¼ 1: Therefore, average number of loops of the contour

length ‘ should decay as ‘23=2expð21=‘Þ with growing ‘:

That is why the number of loops on the vertical axis of the

Fig. 8a is weighted by the factor of expð21=‘Þ: We can

express surprise that power law ‘23=2 comes so slowly and

appears only at large N (see the table on the inset to Fig. 8a).

We can also check cross-over value of ‘ and how it

depends on N: Vertical lines on the Fig. 8a mark the

characteristic segment lengths at which the cross-over takes

place for the polymer chains of different length. And Fig. 8b

shows the dependency of these threshold values on the

polymer length N: It is clearly seen that ‘ scales as N2=3:

On the larger scales, ‘ . N2=3; the probability to find the

loop of length ‘ saturates and becomes practically

independent of ‘: To estimate its constant value, we can

resort to the following argument. The random walk of a

length greater than N2=3 hits the borders of the lattice. The

end of the longer walk may be found in any lattice site with

nearly equal probability 1=N: Since the loop formation

condition is met by kzl of sites neighboring to the loop

starting site, the loop probability is about , kzl=N: Here, kzl
is the mean coordination number of the lattice (which takes

into account that the sites on the surface have fewer

neighbors than those in the bulk). At the same time, there are

N 2 N2=3 < N such loops possible, therefore, there must be

about kzl loops of each length found in every walk. Indeed,

the horizontal dash line on the Fig. 8a corresponding to kzl
of the compact walk of the size 22 £ 22 £ 22 reasonably

estimates the number of long loops in the globule of this

size.

The results presented in Fig. 8 are in full agreement with

the theory, both in terms of the power law decay (‘23=2) at

moderate ‘; the range of the cross-over (‘ , N2=3), and the

constant levels at large ‘ (kzl).

3.3. Correlation between ends in Hamiltonian walks

It is an interesting question in the theory of polymer

globules, whether the ends of the polymer chain are

effectively independent of each other in terms of their

positions inside globules, or they repel (attract) due to the

conditions of the connectedness and compactness of

the chain. If the end of the chain is located in the bulk of

the globule, there may be entropic cost associated with the

rearrangement of the parts of the chain surrounding it due to

necessity to keep the compactness of the globule. This local

rearrangement of the polymer chain may affect the

probability of the other end to locate in the vicinity.

Effectively, this may lead either to the attraction, or to the

repulsion of the ends of the chain. Theoretically, this issue

remains currently unclear [50].

To check on the existence of such effective interaction

between chain ends, we calculate the end–end correlation

coefficient for the samples of generated Hamiltonian walks.

This quantity is defined via the formula

c ¼
kx1x2lffiffiffiffiffiffiffiffiffiffiffiffi
kx1

2lkx2
2l

p ; ð7Þ

where x1 and x2 are the x-coordinates of the two chain ends,

k…l means averaging over all sampled walks. For

simplicity, we place coordinate system origin in the center

of the cube, such that kx1l ¼ kx2l ¼ 0: Due to the symmetry,

correlations coefficients for y and z coordinates are the same

as for x; while all the non-diagonal elements (such as kx1y2l
etc.) vanish.

The results obtained from the simulations on the lattices

of the size L ¼ 2; 3;…; 10 are presented in Fig. 9 along with

the data of the exhaustive enumeration for the 2 £ 2 £ 2 and

3 £ 3 £ 3 lattices and the exact results for the disconnected

ends model (which, due to the chess board theorem, is only

meaningful for odd lattices; for even lattices, two ends must

be on the oppositely colored sites, and, therefore, are not

correlated at all). The results for the small lattices are very

close to exact (whereas the original algorithm [1] produces

significant systematic errors). This is another good sugges-

tion that our algorithm has weaker bias than that of the work

[1].

The fact that correlation coefficient is negative indicates

that there is some effective repulsion between the chain

ends. This effect decreases and supposedly goes to zero with

increasing of lattice size. Moreover, correlation between

ends very rapidly approaches correlation between discon-

nected points subject only to excluded volume condition.

Fig. 9. Mean diagonal end–end correlation coefficients for the Hamiltonian

walks on the lattices of different sizes. The data of exact calculation for

2 £ 2 £ 2 and 3 £ 3 £ 3 lattices are shown as þ . The data of exact

calculation of correlation coefficients for the random pairs of dots on the

odd lattices obeying the excluded volume condition and the chess board

theorem are shown for the comparison as £ . The results obtained from

generation of the walks with algorithm of the work [1] are shown as the

broken line.

R. Lua et al. / Polymer 45 (2004) 717–731 725



This observation suggests that even the small repulsive

correlation between chain ends is mostly due to the benign

excluded volume effect of the terminal monomers, and

chain connectivity provides only faint, although also

repulsive, contribution (probably mostly due to excluded

volume of monomers next to the terminal ones).

4. Results: compact loops and their knots

4.1. Average crossing number

Fig. 10 displays the average number of crossings in

the plane projection of a conformation, together with the

reduced number and mathematical prediction, for the range

of sizes L ¼ 4–20: The crossing numbers are plotted against

the length (number of monomers) N ¼ L3:

The prediction

C ¼
L3

3ðL 2 1Þ2
2 1

 !
L3

3
ð8Þ

for the average crossing number of an L £ L £ L confor-

mation follows from the assumption that every segment

upon projection in some ‘vertical’ direction produces

crossings with all segments above and below it inside the

cylinder of the cross-section unity. In this sense, the result

for the average crossing number is trivial. However, it is

interesting to note that for large L; the expression for the

average crossing number scales as C ¼ L4 ¼ N4=3; which is

reminiscent of a ‘four-thirds power law’ relating crossing

number and ‘rope length’ for tight knots [51–53]. This

suggests that this four-thirds power law does not reflect on

any intimate properties of tight knots, except their overall

space filling character.

From the average crossing number, one could get an idea

of how the amount of computational resources involved in

the calculation of a knot invariant, say Alexander, scales

with conformation size. The Alexander invariant entails

computation of the determinant of a C £ C matrix. Naively

using Gaussian elimination, computation time would

roughly scale as C3 ¼ N4:

4.2. Knot probabilities

Fig. 11 displays our results for the fraction of

conformations (of a given size N ¼ L3) which are

unknotted. For each L from 4 to 12, 105 conformations

were generated. The last data point for the largest

conformation we were able to analyze (14 £ 14 £ 14)

represents 4 trivial knots out of 350,000 conformations.

Since the total number of conformations of the length N

grows exponentially with N; it is not a surprise that the

probability of a trivial knot decays exponentially with N

[54,55]. Accordingly, computational data on trivial knot

probability are customarily fit to exponential. In our case,

the exponential fit to the (last three) data points yielded an

estimate for the unknotting probability as a function of N;

, expð2N=196Þ; as shown in Fig. 11.

Previously, there were some works measuring knotting

probabilities for lattice polygons in confined geometries [42,

43]. In particular, Mansfield [43] has examined knots of

compact Hamiltonian cycles on a lattice—the same problem

we consider here. However, these authors use one invariant,

the Alexander polynomial, in their computations (although

Mansfield [43] evaluated Alexander polynomial at 10

different values of t). This is understandable, as the

Vassiliev invariants are a relatively recent discovery [46],

in particular the invention of explicit and computationally

implementable formulas for their evaluation. Moreover, we

were able to analyze larger conformations: the work [43]

examined N # 1000; while we consider N up to

143 ¼ 2744, almost three times larger.

Mansfield’s fit to his results (expð2N=270Þ) is shown in

the thinner, dotted line in Fig. 11. Importantly, our results

for N # 1000 agree well with both the results and the fit by

Mansfield [43]. However, examination of larger N leads us

to revise the estimation of characteristic length N0 in

expð2N=N0Þ from N0 < 270 to N0 < 196: Moreover, our

result for N0 may turn out an overestimate, and real N0 may

eventually be found even smaller than 200. Indeed, the

Fig. 10. Average crossing numbers in the knot projection, before and after

preprocessing with Reidemeister moves, together with mathematical

prediction. These were plotted against the size (length N ¼ L3) of the

conformation, from L ¼ 4 to 20.

Fig. 11. Trivial knot probabilities for conformations of size L ¼ 4–14: The

thinner dotted line represents Mansfield’s [43] fit to his data points.
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leading source of inaccuracy in our results is due to the

incomplete set of topological invariants. This can lead to

errors of assigning the trivial knot status to some loops

which are in fact not trivial knots. Such errors contaminate

our trivial knot sets with non-trivial knots, leading to the

overestimate of trivial knot probability, and this effect only

increases with growing N; because at small N it is much less

likely to meet a non-trivial knot confused with trivial one by

our set of knot invariants. Thus, we conclude that the trivial

knot probability for compact polymers goes as

wcompact;trivial . expð2N=N0Þ; N0 & 196 ð9Þ

This result is essential for several reasons. We have shown

in the Section 3.2 that the sub-chains inside the sufficiently

big compact globule behave somewhat like Gaussian

polymers, with R2ð‘Þ proportional to ‘ despite the obvious

presence of volume exclusion constraint. This fact,

consistent with Flory theorem, leads to the traditional

understanding that the chains in the melt as well as sub-

chains in the globule are Gaussian. From this, it would then

be logical to assume that the trivial knot probability for them

should also be the same as for corresponding Gaussian

polymers, and not the same as for the swollen self-avoiding

polymers. We remind that the trivial knot probability for

Gaussian polymers, that is, for polygons of N segments with

no volume exclusion, also follows the exponential law

expð2N=N0Þ; with N0 varying from about 350 for Gaussian

random polygons (in which all segments have Gaussian

distributed lengths) [41] to about 260 for regular polygons

(made of length 1 segments) [39,56]. For the self-avoiding

polymers, the value of N0 is even larger [40,57]. Our result

now indicates that in regard to the knot forming ability of

the polymer, chain compaction not only screens away the

excluded volume, reducing N0 from its value for ‘thick’

polymers to that for ‘thin’ ones, but produces the much more

dramatic effect, decreasing N0 significantly below its

Gaussian value. In brief, compact polymers, although they

satisfy Flory theorem, are not Gaussian for topological

purposes, they are much (exponentially) more prone to

forming knots.

The Fig. 12 displays the probabilities of some non-trivial

knots in compact loops as the function of the loop length.

Similar to the studies made with non-compact chain models

(see, e.g., [41,40]), the probability to obtain any particular

knot starts from 0 at small N; then reaches a maximum at

some finite value of N; and then decreases and asympto-

tically approaches to 0 with further growth of N: As in other

cases, the qualitative explanation of this tendency is clear.

When N is small, the loop might be too short to form a given

knot. In fact, for the lattice model, it is clear that for every

knot there is a finite value of N below which this knot cannot

be formed at all, so its probability is exactly 0 (for instance,

the shortest loop capable of forming a non-trivial knot on the

cubic lattice has N ¼ 24 segments). However, even for

significantly larger N there might still be relatively few

conformations to realize the given knot, and that yields low

probability. At the other end, when N is exceedingly large,

there are great many knots which can be comfortably

formed, and their number keeps increasing with N; yielding

a decaying probability to locate the given knot. We should

emphasize that the results presented in Fig. 12, although

qualitatively reasonable, have somewhat preliminary char-

acter, because our use of the restricted set of topological

invariants at the very high crossing numbers may lead to

inaccurate knot assignments.

4.2.1. Statistics of segments and loops in trivial knots

In this section, we want to address the following

problem. Consider a sub-chain of some length ‘ which is

large, but much smaller (in a proper sense) than the entire

globule. Suppose further that the chain as a whole is closed,

so it is a loop, and that this loop is a trivial knot. On the one

hand, since ‘p N; it seems that the sub-chain has no way to

‘know’ what are the global topological properties of the

entire loop. On the other hand, it is also obvious that the

property of being a trivial knot is not a local but a global

property of the loop. In some loose sense, we can say that

since the entire loop has no knots, there is no way the sub-

chain of the length ‘p N may have knots. Of course, to

speak about knots in a sub-chain we should somehow decide

how to close its ends; what we are saying here is that the

sub-chain of an unknotted loop must not have knots under

the majority of natural ways to connect its ends. This logic

then seems to suggest that the sub-chain may tend to be

swollen compared to its random walk size ‘1=2; based on the

analogy with loops in unrestricted space in which trivial

knots are known to swell [40,56,58]. However attractive,

this logic at least does not exhaust the problem, because if

sub-chain sizes were to scale as ‘m with m $ 1=2; then these

sub-chains would strongly overlap in the overall compact

globule, making it difficult to avoid making knots between

the sub-chains. All these inconclusive arguments are

presented here in order to motivate the problem: how does

the sub-chain size (say, end-to-end distance) scale with the

sub-chain length if the sub-chain is buried deeply inside a

collapse trivial knot?

Measurements of mean-square end-to-end distance

(defined similarly to Eq. (6) were made on sub-chains

(segments) of compact chain conformations with trivialFig. 12. Probabilities of occurrence of a few knots.
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knots and on sub-chains of all conformations regardless of

knot-type. The results (Fig. 13) show that sub-chains of

trivial knots are smaller or more compact compared to sub-

chains of all knots. A similar result was also obtained for the

gyration radius, which is another measure of size. (The

extrema in the plots are, of course, effects of the finite size of

the conformations.)

Measurements of the number of sub-loops formed in

each conformation were also made (Fig. 14. A loop is

formed when monomers not connected by a link are next to

each other in space). The result for the number of sub-loops

in conformations with trivial knots, compared to the number

of sub-loops in conformations regardless of knot-type, is in

complete agreement with the previous results: since sub-

chains are more compact in overall trivial knots, they are

more likely to form sub-loops.

These results should be contrasted to the corresponding

results for gyration radius of (entire) non-compact rings,

which indicate that trivial knots in such rings are, on

average, larger compared to all other knots [40,56]. This is

understood [58] based on the argument that there are very

compact conformations available for non-trivial knots are

included in the average over all loops and are excluded from

the average over trivial knots only. Clearly, for this

ensemble of unrestricted loops, trivial knots remain swollen

compared to the all-loops-average not only on the level of

entire polymer, but also on the level of the sub-chains. In

fact, this effect is expected to be scale-invariant at the length

exceeding the characteristic knotting length N0 [58]. Based

on this comparison, we can conclude that it must be

significantly more difficult to confine a trivial knot loop into

a small volume than to realize a similar confinement of a

phantom polymer, either a chain or a loop. Indeed, to

compress a trivial knot one has to reduce its entropy by

forcing all the sub-chains to shrink. This means, confine-

ment entropy for the trivial knot is a volume effect, it scales

as N in thermodynamic limit. It must be compared with

confinement entropy of usual polymers which only scales as

N2=3 [26]. This conclusion of the increased stiffness of trivial

knots compared to other loops is consistent with the data of

the work [56] on the probability distributions of the

unrestricted loop sizes: with decreasing overall loop size,

this probability decreases much sharper for trivial knots than

for averaged loops.

Although short of a proof, our results are consistent with

the hypothesis of a ‘crumpled globule,’ which was

formulated many years ago [59], and which remains in the

rank of hypothesis till today.

5. Conclusion

We formulated the new combinatorial algorithm for

generation of Hamiltonian walks and cycles on the cubic

lattices. This algorithm reduces biases compared to the

previously known methods. The presented algorithm per-

forms well on generation of the large compact self-avoiding

walks.

We employed the proposed generation algorithm to

verify Flory theorem in its applicability to the random

compact chains. We found that the statistics of the sub-

chains inside the large globule approaches Gaussian, as

predicted by Flory theorem, for sufficiently long polymers.

Unexpectedly, this happens at rather large values of chain

length N; about 105. Although it is not entirely clear what is

the most reasonable numerical correspondence between N

for the lattice toy model and the number of residues a the

real protein, it is safe to question the direct applicability of

Gaussian statistics for the interior of even large protein

globules. On the other hand, it should be understood that the

deviations from Gaussian statistics found for modest N

compact chains are really small, and unless one is interested

in sophisticated scaling analysis, they provide very

reasonable qualitative fit to the data.

Using knot invariants, we were able to identify the trivial

knots and the first few knots in a sample of loop

conformations. We found that the probability of trivial

knot in a compact conformation is significantly smaller than

was previously believed, and that it is much smaller than for

the corresponding Gaussian polymer. This suggests that

there should be an abundance of knots in a random sample

Fig. 13. Ratio of sub-chain mean-square end-to-end distance in trivial knots

and in all loops versus number of links in the sub-chain. For the chain of the

length N ¼ L3; filling L £ L cube, results were plotted up to L2:

Fig. 14. Ratio of number of sub-loops in trivial knots and in all loops, versus

number of links in the sub-loop. Results for L ¼ 12 and L ¼ 14 were not

plotted due to excessive ‘noise’. This result complements Fig. 13.
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of compact conformations. We have also found that global

restriction that the loop as a whole is a trivial knot has a

dramatic statistical effect on the conformations of all sub-

chains, making them significantly more compact than for

other loops.

Our results suggest that low propensity of knots in real

proteins might in fact be a statistically significant fact

requiring an explanation, although it seems too early to

speculate what this explanation might be, whether it is

related to the physics of folding, or to some functional

properties of proteins, or to some aspect of their evolution.
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Appendix A. Is the new combinatorial algorithm

unbiased?

The building of the Hamiltonian walk on the lattice with

the help of some combinatorial algorithm can be viewed as

the process of labeling the edges of the lattice according to

some rules (as two matching, patching or other procedures).

One of the rules is that none of the lattice nodes may have

more then two labeled edges incident on it. There are

different configurations of the labeled edges possible on the

lattice. We now would like to consider the space of all the

possible such configurations. Such space itself can be

represented as a graph, in which every configuration of

labeled edges is a vertex, and two vertices are connected if

and only if the corresponding configurations differ only by

the labels of one lattice edge. Such space includes

configuration in which none of the edges is labeled. We

call such a configuration root. The space can be divided into

the following subspaces:

(i) configurations of labeled edges at which some of the

lattice nodes do not have incoming labeled edges

(disconnected nodes);

(ii) configurations containing multiple sub-cycles and sub-

chains, all the lattice nodes have two incident labeled

edges except the ends of the sub-chains. No new lattice

edge can be labeled. (Such configurations the algor-

ithm [1] used to start patching procedure);

(iii) Hamiltonian cycles.

The configuration space is schematically shown in the

Fig. 9. As an illustration we display different configurations

possible on the extended 2 £ 2 £ 2 lattice.

An arbitrary combinatorial algorithm building a Hamil-

tonian walk starts from the root node of the configuration

space graph, then performs random walk along some path

on the graph, and finishes its work at some node of subspace

(iii). For the algorithm to be unbiased, the number of all

possible paths leading to each node in the subspace (iii)

should be equal.

Let us consider the procedures of labeling random links,

branching and patching of algorithm [1]. The random

labeling of links and branching of sub-chains may lead

either directly to the formation of the Hamiltonian cycle

from subspace (iii), or to the formation of some configur-

ation from the subspace (ii). The latter situation is much

more probable due to the size of the subspace (ii) is much

larger than the size of (iii). Suppose the algorithm generated

some configuration from (ii). Now the patching procedure

has to transform it to the single cycle. Even if one supposes

that configurations from (ii) and (iii) are generated with

equal probability, it appears that the number of paths

leading from (ii) to different Hamiltonian cycles in (iii) is

different. This can be easily seen from the enumeration of all

possible ways to label the 2 £ 2 £ 2 lattice. The configur-

ations 1 and 2 can be transformed to the Hamiltonian cycles

4 and 5, but there is no way to obtain the cycle 6 as a result

of patching. Moreover, the number of paths to cycles 4 and 5

is also slightly different. In general, the probability to

generate some Hamiltonian walk is proportional to the

number of possible configurations of sub-cycles that can be

transformed to this walk and to the number of ways to apply

patching procedures to these configurations of sub-cycles.

And this is the patching procedure that leads to the biased

sampling of Hamiltonian walk. Fig. 15 gives a simple

example.

Fig. 15. The space of possible configurations of links on the cubic lattice.

Different subspaces and example configurations of links are shown.
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Also it can be shown that the formation of the

configuration with dead ends (similar to the configuration

3 in Fig. 15) produces biased sampling of Hamiltonian

walks too. The dead end forms if some vertex of the lattice

which has only one incoming link has no unsaturated

neighbors.

The algorithm [1] can be corrected by avoiding, on all

stages, placing a new link if it leads to either the closing of a

sub-cycle, or the formation of the dead ends. If the

formation of the sub-cycles and the dead ends is forbidden,

then paths starting from the root configuration and ending in

the subspace (iii) do not pass through the subspace (ii), and

the patching is not applied.

Undoubtedly, placing the links on the lattice in random

order does not produce any biases. As for the branching of

the sub-chains we are not so sure. However, in our

simulations we did not see any worrisome signs from this

procedure.

Appendix B

Pseudocode

Input: A lattice graph LG(vertices V ; edges E).

Output

Case 1: Hamiltonian cycle WE on the extended lattice

graph;

Case 2: (If LG is even):Hamiltonian cycle WL on LG:

Begin;

Color vertices of LG alternatively white and black;

(if Case 1): Generate extended lattice graph EG;

PerformRandomBipartiteMatching();

End.

Subroutines:

PerformRandomBipartiteMatching():

Begin;

While(number of unsaturated vertices . 0)

Choose random unsaturated vertex P;

Choose random neighbor Q;

if (Q unsaturated):

Try Link Vertices (P,Q);

else if (Q saturated):

Choose direction along sub-chain, QS;

Find end of sub-chain, T;

Try Grow Subchain (T);

Remove link QR;

Try Link Vertices (P,Q);

End if;

End while;

End.

Try Link Vertices (P,Q):

Begin;

Draw link PQ;

Find dead ends and cycles;

if dead ends found, or (length of cycle , length of

complete Hamiltonian walk):

Remove link PQ;

End.

Try Grow Subchain (T);

Begin;

List unsaturated neighbors of T;

While List is not empty:

Choose random vertex X from List;

Try Link Vertices (X,T);

if link XT is drawn:

End.

else:

Remove link X from List;

End while;

End.
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